CVE-2014-3153 分析以及利用
作者:retme 发布时间:September 19, 2014 分类:AndroidSec No Comments
这是两个多月前的一篇笔记,一直没有贴出来。而现在霓虹小兄弟已经把逆向出的代码扔出来很久了。但是写这篇笔记的时候除了towelroot V1以外啥也没有,所以~~当时其实我很快就掌握了利用的细节,主要是一开始我就没想逆向towelroot,直接靠trace定位了利用方法。
转载请注明 http://retme.net/index.php/2014/09/19/cve-2014-3153.html
膜拜geohot~以下是当时的笔记:
一,首先看补丁
https://github.com/torvalds/linux/commit/e9c243a5a6de0be8e584c604d353412584b592f8
if (requeue_pi) { /* + * Requeue PI only works on two distinct uaddrs. This + * check is only valid for private futexes. See below. + */ + if (uaddr1 == uaddr2) + return -EINVAL; + + /*
补丁要求两个 futex地址不能相同。如果相同会发生什么呢?
二,相关数据结构
实际上每个 futex进入内核中会计算一个 key( get_futex_key)并且被插入哈希表futext_queues, futext_queues的结构如下:
static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; static struct futex_hash_bucket *hash_futex(union futex_key *key) { u32 hash = jhash2((u32*)&key->both.word, (sizeof(key->both.word)+sizeof(key->both.ptr))/4, key->both.offset); return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)]; }
futex_hash_bucket是哈希表中的一个节点,结构如下
struct futex_hash_bucket { spinlock_t lock; struct plist_head chain; };
其内部也是一个自旋锁,和一个队列。 chain 是一个优先级队列,等待线程的优先级越高,该线程在队列中越靠前。
plist_head链表中的成员是futex_q,代表了一个 futex的内核对象
/** * struct futex_q - The hashed futex queue entry, one per waiting task * @list: priority-sorted list of tasks waiting on this futex * @task: the task waiting on the futex * @lock_ptr: the hash bucket lock * @key: the key the futex is hashed on * @pi_state: optional priority inheritance state * @rt_waiter: rt_waiter storage for use with requeue_pi * @requeue_pi_key: the requeue_pi target futex key * @bitset: bitset for the optional bitmasked wakeup * * We use this hashed waitqueue, instead of a normal wait_queue_t, so * we can wake only the relevant ones (hashed queues may be shared). * * A futex_q has a woken state, just like tasks have TASK_RUNNING. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. * The order of wakeup is always to make the first condition true, then * the second. * * PI futexes are typically woken before they are removed from the hash list via * the rt_mutex code. See unqueue_me_pi(). */ struct futex_q { struct plist_node list; struct task_struct *task; spinlock_t *lock_ptr; union futex_key key; struct futex_pi_state *pi_state; struct rt_mutex_waiter *rt_waiter; union futex_key *requeue_pi_key; u32 bitset; };
看到了里面与 PI有关的东西,现在还不明白 ,一会儿通过几个函数了解一下
现在只要知道 futex 有 PI 和 non-PI之分, PI futex的 futex_q结构会有额外的几个成员, futex-> pi_state->pi_mutex会是一个rt_mutex ,而 rt_mutex_waiter是等待他的一个结构,通常分配在等待线程的栈上
三 函数执行流程
1. futex_lock_pi
实际上会将一个栈上的 rt_mutex_waiter插入到链表futex_q.pi_state->pi_mutex 中,这是一个rt_mutex的结构
调用流程: futex_lock_pi->rt_mutex_timed_lock-> rt_mutex_timed_fastlock->rt_mutex_slowlock->task_blocks_on_rt_mutex
debug_rt_mutex_init_waiter(&waiter); rt_waiter 是rt_mutex_slowlock 在栈上的临时分配的结构
随后futex_lock_pi->rt_mutex_timed_lock-> rt_mutex_timed_fastlock->rt_mutex_slowlock->__rt_mutex_slowlock
将进入无限等待,除非被唤醒
static int __sched __rt_mutex_slowlock(struct rt_mutex *lock, int state, struct hrtimer_sleeper *timeout, struct rt_mutex_waiter *waiter) { int ret = 0; for (;;) { /* Try to acquire the lock: */ if (try_to_take_rt_mutex(lock, current, waiter)) break; /* * TASK_INTERRUPTIBLE checks for signals and * timeout. Ignored otherwise. */ if (unlikely(state == TASK_INTERRUPTIBLE)) { /* Signal pending? */ if (signal_pending(current)) ret = -EINTR; if (timeout && !timeout->task) ret = -ETIMEDOUT; if (ret) break; }
2.futex_wait_requeue_pi
/* * The waiter is allocated on our stack, manipulated by the requeue * code while we sleep on uaddr. */ debug_rt_mutex_init_waiter(&rt_waiter);// 临时分配一个rt_waiter,与 futex_lock_pi类似 rt_waiter.task = NULL; ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); if (unlikely(ret != 0)) goto out; q.bitset = bitset; q.rt_waiter = &rt_waiter; //for use with requeue_pi q.requeue_pi_key = &key2; //requeue pi target key if(is_my_process){ printk("[%d] futex_wait_requeue_pi:Prepare to wait on uaddr.\n", task_pid_vnr(current_task)); futex_dump_futex_q(&q); } /* * Prepare to wait on uaddr. On success, increments q.key (key1) ref * count. *//等待从addr1 被唤醒 ret = futex_wait_setup(uaddr, val, flags, &q, &hb); if (ret) goto out_key2; if(is_my_process){ printk("[%d] futex_wait_requeue_pi:before Queue the futex_q.\n", task_pid_vnr(current_task)); futex_dump_futex_q(&q); } /* Queue the futex_q, drop the hb lock, wait for wakeup. */ futex_wait_queue_me(hb, &q, to); //将本线程插入futex2的队列中,这里是将 rt_waiter插入去等待
3 futex_requeue_pi(futex1 ,futex2 )会将futex1上面的 waiter唤醒并插入 futex2
如果这两个值相等,那么唤醒 futex1上的 waiter会使得 futex_wait_queue_me线程被唤醒,但是这个值又会被插入到 futex2中
由于futex_wait_requeue_pi的线程被唤醒并退出,那么 futex2的 rt_mutex队列上面便挂了一个已经被释放掉的 rt_mutex_waiter,这就是内核栈空间的use after free
四。如何利用?
futex_wait_requeue_pi所在的线程内核栈出现的 UAF问题,该线程利用 sendmmsg可以对内核堆栈进行控制
我们选择控制 rt_mutex_waiter结构中,这个结构有两个链表, UAF之后链表将被我们控制
struct rt_mutex_waiter { struct plist_node list_entry; struct plist_node pi_list_entry; struct task_struct *task; struct rt_mutex *lock; }
于是我们调用 futex_lock_pi会走到task_blocks_on_rt_mutex 触发一个plist_add操作,造成内核栈信息泄漏,并且给了我们一次机会进行任意地址写
我们选择写内核栈上的 thread_info->addr_limit,一个栈上面的地址将会被写入到 addr_limit,导致我们有了从用户态写内核态的方法
这相当于造出了 CVE-2013-6282,读写任意地址
注意:该方法不能退出进程,否则释放被利用的线程将让内核崩溃